Experimental evaluation of a robust optimization method for IMRT of moving targets.
نویسندگان
چکیده
Internal organ motion during radiation therapy, if not considered appropriately in the planning process, has been shown to reduce target coverage and increase the dose to healthy tissues. Standard planning approaches, which use safety margins to handle intrafractional movement of the tumor, are typically designed based on the maximum amplitude of motion, and are often overly conservative. Comparable coverage and reduced dose to healthy organs appear achievable with robust motion-adaptive treatment planning, which considers the expected probability distribution of the average target position and the uncertainty of its realization during treatment delivery. A dosimetric test of a robust optimization method for IMRT was performed, using patient breathing data. External marker motion data acquired from respiratory-gated radiotherapy patients were used to build and test the framework for robust optimization. The motion trajectories recorded during radiation treatment itself are not strictly necessary to generate the initial version of a robust treatment plan, but can be used to adapt the plan during the course of treatment. Single-field IMRT plans were optimized to deliver a uniform dose to a rectangular area. During delivery on a linear accelerator, a computer-driven motion phantom reproduced the patients' breathing patterns and a two-dimensional ionization detector array measured the dose delivered. The dose distributions from robust-optimized plans were compared to those from standard plans, which used a margin expansion. Dosimetric tests confirmed the improved sparing of the non-target area with robust planning, which was achieved without compromising the target coverage. The maximum dose in robust plans did not exceed 110% of the prescription, while the minimum target doses were comparable in standard and robust plans. In test courses, optimized for a simplified target geometry, and delivered to a phantom that moved in one dimension with an average amplitude of 17 mm, the robust treatment design produced a reduction of more than 12% of the integral dose to non-target areas, compared to the standard plan using 10 mm margin expansion.
منابع مشابه
The influence of respiratory motion on dose distribution of 3D-CRT and IMRT- A simulation study
Background: 3DCRT (three-dimensional conformal radiotherapy) and IMRT (intensity-modulated radiotherapy) has provided us with tools to delineate the radiation dose distribution of tumor targets. However, the precision of radiation can be compromised by respiratory motion, which usually limits the geometric and dosimetric accuracy of radiotherapy. The purpose of this study is to evaluate the imp...
متن کاملOptimal Observer Path Planning For Bearings-Only Moving Targets Tracking Using Chebyshev Polynomials
In this paper, an optimization problem for the observer trajectory in the bearings-only surface moving target tracking (BOT) is studied. The BOT depends directly on the observability of the target's position in the target/observer geometry or the optimal observer maneuver. Therefore, the maximum lower band of the Fisher information matrix is opted as an independent criterion of the target estim...
متن کاملA method for standardizing intensity modulated radiation therapy planning optimization for nasopharyngeal carcinoma
Background: To investigate a method for standardizing intensity modulated radiation therapy (IMRT) optimization for nasopharyngeal carcinoma (NPC), in order to reduce the influence of subjective factors. Materials and Methods: This study is based on example IMRT plans for NPC, which were randomly divided into data acquisition and data verification groups. Organs at risk (OARs) were analyzed for...
متن کاملFLUENCE MAP OPTIMIZATION IN INTENSITY MODULATED RADIATION THERAPY FOR FUZZY TARGET DOSE
Although many methods exist for intensity modulated radiotherapy (IMRT) fluence map optimization for crisp data, based on clinical practice, some of the involved parameters are fuzzy. In this paper, the best fluence maps for an IMRT procedure were identifed as a solution of an optimization problem with a quadratic objective function, where the prescribed target dose vector was fuzzy. First, a d...
متن کاملEvaluation of moving bed biofilm reactor (MBBR) by applying adaptive neuro-fuzzy inference systeme (ANFIS), radial basis function (RBF) and Fuzzy Regression Analysis
The purpose of this study is to investigate the accuracy of predictions of aniline removal efficiency in a moving bed biofilm reactor (MBBR) by various methods, namely by RBF, ANFIS, and fuzzy regression analysis. The reactor was operated in an aerobic batch and was filled by light expanded clay aggregate (LECA) as a carrier for the treatment of Aniline synthetic wastewater. Exploratory data an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 54 9 شماره
صفحات -
تاریخ انتشار 2009